City and Guilds Mnemonic Code

By Andrew Herbert

Last Revised 9th May 2015

Introduction

City and Guilds Mnemonic Code is a machine independent assembly code created
by the City and Guilds Institute to enable practical programming questions to be
included in the examination for their basic and advanced Certificates for
Computer Personnel (courses 319 and 320 respectively). The courses were
introduced in 1964 and revised in 1968 when course 319 was renamed
“Certificate in Computer Programming and Information Processing”.

Very little trace of Mnemonic Code remains: searching the World Wide Web
throws up a few reminiscences of people who used it as students, but no detail of
the language itself. There is an ICL 1900 implementation (#XMS3) being
resurrected by Brian Spoor, who has obtained a printed course specification,
copyright date 1967, which contains a language definition.

[have been fortunate to obtain a copy of the
Elliott 903 version via Mr Chris Pugh-Jones
who contacted me after a previous article |
wrote about Elliott 903 software for
Resurrection. Mr Pugh-Jones has a collection of
paper tapes for both Elliott 803 and 903
computers dating from his student days and
one of these had a written label “MNEMONIC CODE CITY & GUILDS 319 903
VERSION” and a punched legible heading giving the same information plus “ISS
1” - i.e, Issue 1. The tape was accompanied by a typescript sheet listing the
program entry points.

Sadly the tape did not read under initial instructions on a real 903.
Investigations by myself and Terry Froggatt using our 903 simulators and
associated tools found the tape to be a loader followed by a store image, but with
a corrupted initial section (5 missing rows). Terry corrected this and we then
had a tape that would read in and execute programs successfully. The loader
was different to the other Elliott loaders we have encountered. To document the
program we both set about analysing it. We now have a source that can be
assembled using Elliott 903 Symbolic Input Routine to produce an identical store
image to the original tape.

Subsequently, Terry obtained two tapes labelled “C & G Compiler”, master and
copy respectively, from the Museum of Scotland. Apart from the omission of a
legible header these are identical to the corrected Pugh-Jones tape and so it can
be reasonably assumed we have recovered the definitive Elliott 903 system for
running City and Guilds Mnemonic Code.

The missing rows on the original tape are a mystery - the rows are physically
missing, rather than damaged or unreadable suggesting some error when the
tape was originally punched.

Mr Pugh-Jones also found in his archives a printed specification of the “Revised
Mnemonic Code (1968)” which defines an extended order code compared to that
in the document circulated by Brian Spoor so it is assumed this earlier document
relates to the original 1964 specification.

Mnemonic Code

Mnemonic Code comprises assembler directives, machine orders (instructions)
and numbers. Data are held internally in floating point form.

The code assumes a computer with 1,000 words of store. Each word can contain
an order, a (floating point) number or a character for input/output. The
architecture requires integers to be held with at least 7 digits precision.

The order code is of the single address form. The first 10 locations of store are
reserved for registers. Location 0 always contains the value 0; it cannot be
updated. Location 1 is the accumulator (A). Location 4 is used to hold the return
link when entering a subroutine. All the registers can be referenced as index
registers.

In addition to the index registers there is an addition control register (C) that
contains the address of the next instruction to be executed. Unless updated by a
jump instruction C is automatically incremented after each instruction is
executed.

An order comprises four fields expressed as a seven digit number:

[FF_[Q[nnn[m]

Order number F
Address n
Modifier m
Trace Q

BN

The order number specifies the function to be performed as listed below. The
machine is unusual in have orders for mathematical functions, but these could be
thought of as “extracodes” as found in machines such Atlas.

The address is a natural number in the range 0-999.
The modifier is a natural number in the range 0-9 and, for orders that support

modification, the effective address is computed by adding the content of the
address field to the content of the nominated index register (i.e., store location).

Thus, using 0 as the modifier yields the address field unmodified. Note that,
since the contents of store comprise floating-point numbers, the value of the
index register has to be rounded before it is added to the address field.

The interpretation of the trace field is implementation dependent, but indicates
that some sort of diagnostic output should be produced whenever the
instruction is executed.

Numeric | Mnemonic Operation Remarks

Function

00 LDA n, m | A:=(n+(m)) Load operand into cleared
accumulator

01 ADD n, m | A:=(A)+(n+(m)) Add operand

02 SUB n, m|A:=(A)-(n+(m)) Subtract operand

03 MLT n, m | A:=(A)*(n+(m)) Multiply by operand

04 DIV n, m | A:=(A)/(n+(m)) Divide by operand

10 LDAN n A:=n Load integer

11 ADDN n A:=(A)+n Add integer

12 SUBN n A:=(A)-n Subtract integer

13 MLTN n A:=(A)*n Multiply by integer

14 DIVN n A:=(A)/n Divide by integer

20 STA n,m | n+(m):=(A) Store (A) without clearing
accumulator

30 JUN n, m|C:=n+(m) Jump unconditionally

31 JGR n, m|If(A)>0 C:=n+(m) Jump if A>0

32 JEQ n,m |If(A)=0C:=n+(m) Jump if A=0

33 JSR n, m | 4:=Link; C:=n+(m) Set link and jump; link is the
address of the instruction
following JSR

34 JST n, m | Wait; C:=n+(m) Wait; jump when start button
operated

40 SQT n, m | A:=sqrt(A) If (A)<0, jump to n+(m)

41 EXP n, m | A:=exp(A) If (A) too large jump to n+(m)

472 LGN n, m | A:=In(A) If (A)<0, jump to n+(m)

43 SIN A:=sin(A) (A) in radians

44 COS A:=cos(A) (A) in radians

45 ARC A:=arctan(A) (A) in radians

46 ENT A:=entier(A) Integral part of (A) to A

50 RCT n, m | character to n+(m) Read single character from
tape

51 PCT n, m | (n+(m)) to tape Punch single character to
tape

52 RNT n, m | numbertoA Read number from tape; jump
to n+(m) if error in the
number

53 PNT n, m | (A)totape Print signed number in A to

tape with n integral and m
fractional digits

54 PNL Punch the characters for new
line

60 RCC n, m | characters to n+(m) Read characters from card

61 PCC n, m | (n+(m)) to card Punch characters to card

62 RNC n, m | numbertoA Read number from card; jump
to n+(m) if error in the
number

63 PNC n, m | (A)totape Print signed number in A on

to card with n integral and m
fractional digits

If an instruction is followed by the letter Q, the trace digit will be set.

The 1968 specification changes the specification of some orders and adds
additional ones, mostly concerned with a richer input/output model as tabulated

below.
Numeric | Mnemonic Operation Remarks
Function
10 LDAN n A:=n+(m) Load integer
11 ADDN n, m | A:=(A)+n+(m) Add integer
12 SUBN n, m | A:=(A)-n+(m)] Subtract integer
13 MLTN n, m | A:=(A)*n+(m) Multiply by integer
14 DIVN n, m | A:=(A)/n+(m)] Divide by integer
31 JEQ n, m|If(A)=0, C:=n+(m) Jump if (A)=0
32 JNE n, m|If(A)<>0, C:=n+(m) Jump if (A)<>0
33 JLE n, m|If(A)<=0, C:=n+(m) Jump if (A)<=0
34 JGE n, m|If(A)>=0, C:=n+(m) Jump if (A)>=0
35 JLT n, m|If(A)<0, C:=n+(m) Jump if (A)<0
36 JGR n, m|If(A)>0, C:=n+(m) Jump if (A)>0
37 JSR n, m | Asabove
38 JST n, m | Asabove
39 LOP n, m |If(5)>0 after (5)-1, Jump if after subtracting 1
C:=n+(m) from location 5, (5)>0
50 ARD n, m Allocate input device n+(m)
to program
51 AWD n, m Allocate output device n+(m)
to program
52 RNA n, m | A:=number Read number; jump to n+(m)
if error in number
53 WNA n, m | Write (A) Write (A) with n integral and
m fractions digits. If n and m
are zero, floating point is
implied
60 RCH m, n | Read one character to | Read character to store
n+(m)
61 WCH n, m | Write one character Write character from store
from n+(m)

62 RNB n, Read characters to Read block of characters into
n+(m) locations starting at n+(m)
63 WNB n, Write characters from | Write block of characters
n+(m) from locations starting at
n+(m)
64 WNL n, Write n+(m) newlines
65 WSS n, Write n+(m) spaces
66 CNN n, Convert character String starts at location
string to number n+(m); result putin A
67 CNC n, Convert number to Number is in (A); string starts
character string in location n+(m) onwards
70 ACB n, Access block n+(m) For direct access devices
n+(m) defines the sector; for
other devices the effect is to
skip n+(m) blocks
71 BSP n, m | Backspace n+(m)
blocks
72 RWD Rewind device
99 STOP Stop Return control to operating
system

The revised specification also defines a collating sequence for characters since
these can be manipulated as numbers in this version of the language.

There are 4 directives to the assembler:

(TITLE) Reads the next line as the program title and copies to the output.
(STOREn) Stores the following program from location n onwards.
(WAIT) Pauses input, awaiting a further program tape to be input.

(EXECUTE n) Marks program complete and sets location n as the location at
which execution should commence.

Note there are no facilities for giving textual names to store locations (i.e., labels)
or any form of relative addresses: all addresses in a program are absolute. Nor
are there facilities for literal addresses - i.e., writing a numeric value in the
address field and having the assembler automatically allocate store to to hold the
value. This makes program structure very fragile - adding or removing an
instruction or number can require wholesale editing. This is a major omission
and great inconvenience to the programmer. The lack of any form of comment
facility further compounds the opacity of programs.

The Elliott Implementation

Terry Froggatt has a sale brochure dating from 1967 that mentions the
availability of “City and Guilds 319 compiler” so it is assumed the system was
distributed by Elliotts. Whether the program originated in-house or not is
unknown. There is circumstantial evidence that the compiler may have
originated on an Elliott 920A, a predecessor of the 903/920B.

The Elliott implementation of Mnemonic Code is very straightforward,
comprising an assembler, an interpreter and an editor. There are two primary
entry points: one to read in and assemble a Mnemonic Code source paper tape
(entry at location 8) and the second to run a previously assembled program
(entry at location 9). These are set up by setting the address on the 903 control
panel keys and pushing the JUMP button. There are secondary entry points to
enable a program made up of several tapes to be read in (Interrupt 1), to resume
execution after a stop (Interrupt 2) and to enable execution tracing for
debugging purposes (Interrupt 3). These are exercised by pressing the
appropriate manual interrupt button on the control panel.

Example program

(TITLE)
SIMPLE TEST
(STORE 12)
LDAN 1

ARC 16

MLTN 4

PNT 1,6

JST

(EXECUTE 12)

Output

SIMPLE TEST
3.141593

All input and output is in Elliott 903 telecode, an ancestor of ASCII. The language
implemented is the simpler 1964 version. The card reader and punch
instructions are not supported as the 903 is a paper tape based machine.

The interpreter has an internal character code which is neither 900 telecode
(with or without parity) or the 6 bit code used by other Elliott software (e.g., the
Algol compiler). Nor does the code comply with the collating sequence given in
the 1968 specification. It does however show some similarity with the earlier
flexowriter code used on the Elliott 503 and 920A.

The assembler makes comprehensive checks of the input source, but halts after
each error report, which consists of an error number and the store location in
which the next instruction or datum will be loaded. In principle the operator can
re-enter the assembler to move past the error but this becomes a tedious
procedure especially if there are a lot of errors in the input.

Typical error report

ERR 2 12

The interpreter also makes comprehensive checks to ensure that programs do
not address outside of the available store and also that no attempt is made to
treat instructions as data or vice versa. (The latter is not a requirement in any of
the language specifications and rules out writing any sort of assembler or loader
in Mnemonic Code, arguably a significant restriction). Execution errors are
reported as a numerical error type code followed by the location of the failing
instruction.

Internally the interpreter does not use the function codes given in the language
specification: instructions cannot be processed as data so this is not visible
externally.

With tracing is enabled, instructions with the Q field set, when executed, produce
a line of output showing the current value of the Control Register (i.e., program

counter) and the Accumulator.

Typical trace output

0 16 9.0000002+00
0 16 8.000000?+00
0 16 7.0000002+00
0 16 6.0000002+00
0 16 5.0000002+00
0 16 4.0000002+00

Floating point arithmetic in the interpreter uses what appears to be an early
issue of the standard Elliott QF/QFMATH/QFINOUT packages.

The editor is effectively a separate program co-resident in store with the
assembler/interpreter and has entry points to read in a steering tape followed
reading in a source tape for editing.

The editor would appear to be based on the Elliott EDIT utility. It has simple
commands to copy, insert and delete text, searching by line or character string.
Unlike EDIT it lacks the facility to read back and check the output tape has been
punched correctly.

Concluding Remarks

Following recovery of a paper tape for the Elliott 903 implementation of
Mnemonic Code it has been possible to reverse engineer the system and
compare to the City and Guilds Institute specification. There are some minor
divergences but the system is clearly suitable for running 1964 C&G Mnemonic
Code programs on a 903.

Mnemonic Code itself is an impoverished assembly language and the choice of
floating point as the basic data format is unconventional. The code can at best be
used for numerical calculations. Any sort of textual or logical processing is
inconvenient if not nigh on impossible. It is not surprising that has almost

disappeared without trace, and indeed the author feels some guilt at resurrecting
it.

